

# RACO BALL SCREWS PRECISION IS OUR PROGRAM





#### CONTENT:

- 1 About Us
- 2 Quality Management Statement
- 3 Introduction RACO Ball Screws
- 4 Precision Ball Screws / Technology
- 5 Structure Type of Nut Assemblies
- 6 Protection Systems / Wipers
- 7 Type Code / Technical Data
- 8 Quality Assurance
- 9 Service & Maintenance



#### 1 ABOUT US

The cornerstone for RACO's ball screws was laid more than 50 years ago based upon RACO's own world-wide patents for single ball return arrangements, the ball groove profile, single ball nut preloaded and the short travel ball screw assembly. Further patents set the standard for high precision ball screws and electromechanical spring brake system, which operate as safety brakes in rail based public transportation systems.

Since that time the effort for a "clean and environmental-safe solution" is our ambition and commitment. RACO Schwelm is among the leading manufactures of electromechanical linear systems.

Through the continuous development of our products the RACO products comes into many different applications. New tasks, in addition to the customers needs are measure for the innovation by RACO. This core competence was assiduously consolidated.

RACO provides high quality products for applications, where high precision linear motion is required. The complete system comes from one source, determined by the customers individual requirements and fabricated in a short period.

Modern technology and our own production facilities in addition to high skilled personal assure the outstanding quality level of our products. Based on the unique modular system for RACO actuators we are able to serve a customer's demand, even for a great variety of executions, right from the shelve.

The company's engineering and production services have been certified under ISO 9001 since 1994. The certification was renewed for compliance with the 2000 version. By creating a optimal workflow process RACO provides competent consultation and support for all business activities from your inquiry through the after sales service.



Fig. 1: RACO Engineering & Production Plant, Schwelm



#### 2 QUALITY STATEMENT

Extract from the quality manual

Within the last years, comprehensive quality of all furnished work proved to be one of the most important factors for the success of a company. Quality is mostly defined as the "total of characteristics of a unit acc. to its adequacy to fulfil determined and demanded requirements".

One of the most important tasks of the management is to meet the requirements acc. to this "comprehensive product quality" by the permanent development of the Quality Management system acc. to DIN EN ISO 9001. Thus RACO was certified in 1994 for the first time.

The scale for all actions within the company with regard to quality is our customers' judgement to the degree to which our products meet the requirements, as well as the permanent comparison of the attained quality level with our goals.

We, are therefore, convinced that a permanent quality improvement which are realized in cooperation with our customers and suppliers is the best solution to provide a solid base for the future development of the company. The activity of each employee plays a decisive role and the following measures contribute to realize this objective:

- fulfilment of the customers' requirements, in particular with regard to works within the period stipulated and to reasonable prices.
- apart from general requirements linked to the products (e. g. safety instructions, standards), all points increasing the advantage to the customer have always been taken into consideration.
- increasing the sense of quality of all employees in order to raise responsibility for executed tasks and increase motivation.
- taking measures in the development stage to avoid errors, which will have a positive effect on both quality and costs.

Since the efficiency of quality-linked activities are permanently tested, it is possible to adapt the organization and the methods of the quality assurance to the latest developments and requirements. So definite aims and contents of our quality politics are:

- fulfilment of the determinated or demanded requirements of our customer.
- gain confidence by always fulfilling these requirements with respect to the customer as well as with respect to their own work



#### 3 INTRODUCTION IN RACO BALL SCREWS

The ball screw assembly consists of screw, nut and balls. The function is to transfer the rotary motion or into a linear motion into rotary motion. This is further extension and development of slide ball screw. The important significance of development is the same as changing a bearing from rolling motion to sliding motion. Because of excellent friction function, ball screw is widely used for all kinds of industrial equipment and precision instruments.

RACO offers a wide range of ground ball screws to cover all requirements: Flanged nut with internal preload, DIN standard Double preloaded flanged nut, DIN standard Double cylindrical preloaded nut and tailor-made products. RACO offers complete screw assemblies with machined ends specify to customer drawings. Nuts are also available with axial play.

Furthermore the RACO company specializes in customized arrangements with high precision demands. The ball screws are available in different designs to cover most technical requirements. Nuts are available preloaded or with axial play. Preloaded nuts should always be used when accuracy of positioning under load is important. Even for small quantities, we provide complete assemblies with customized screw shaft, with a very short delivery time.

The RACO ball screws receive distinction with their high quality, precision and long life capabilities. There are world-wide patents for our single ball return arrangement, the ball groove profile, single ball nut preloaded and the short travel ball screw assembly. The big depth of hardness of the ball tracks (60  $\pm$  2 HRC) allows for regrinding of worn out screws it is not necessary to have a complete new ball screw.

Based on these features we can guarantee long life time for your individual application. Especially very small or even large dimensions and length as well as telescopic or internal oil cooled screws are our most competitive business. RACO ball screws are used in many tool machines and many other applications all over the world.



#### 3.1 Requirements and criteria for ball screws:

The manufacturing is made upon request based on your drawing or technical info and the manufacturing procedures for each RACO ball screw will be selected individually according to the preferred criteria as outlined below. Each step of manufacturing is inspected for hardness and cracks to assure our defined high quality level which is documented in accordance to the ISO 9001/Rev.2000 regulation.

- Load rating (static & dynamic)
- Max. speed (critical speed)
- Buckling
- Accuracy class (lead deviation)
- Reversibility
- Axial play (Preloading of nuts)
- Life time acc. operation conditions
- Ambient influence (Environment)
- Life cycle cost

#### 3.2 Features of RACO Ball Screws

#### A strong profile

We use only high-class materials with certificate. Our ball screws and nuts are produced from high strengh steel suitable for rolling bearing applications. Spindles and nuts for the RACO ball screws are ground in air-conditioned work shop facilities. We spare no cost or efforts, since the accuracy we guarantee can only be achieved by precision grinding. The geometrically true form of our ball nuts and the spindle profiles are crucial for the considerably longer service life of our ball screws. Beyond this, our inductive hardening technique with its considerable penetration depth creates the prerequisite for each spindle to be re-ground, so that it will be reliably for a long life. This means you benefit with lower costs and shorter downtimes in the event of a breakdown.

Another feature favor of RACO ball screws: the special geometry of the profile, the option to freely choose the diameter, and the number of ball screws, depending on the required stiffness. RACO monitors the entire production process carefully, so that the requirements concerning the profile geometry can be met at any time. Moreover, the dimensional accuracy of all RACO ball screws and the quality of the material used are constantly checked and the results properly documented. In matters of quality we do not make any compromises.



#### The RACO nut design

The core of a RACO ball screw is the nut with its single lead ball return that has been developed by us. This design has been protected by a universal patent and ensures that the balls are returned within the ball screw nut at the shortest possible route. This gives you the benefit of a higher rated load with the smallest possible nut dimensions, meaning higher efficiency and a longer service life. RACO ball screws with a single or double nut (nut and counter nut) can be preset free from backlash, so that the correct and recurrent positioning can be ensured even if the load or direction change.

#### **Rotating Nut Systems**

Faster with less inertia! The nut rotates inside bearings and moves along the spindle which is fixed on both sides. The drive motor turns the nut, so inertia and critical speed problems associated with a long rotating shaft, are minimized. Main benefits are: easy & simple incorporation, compact solution ready to use, simplified mounting, reduced inertia and higher linear speed up to 60 m/min.

#### **Telescopic Screws**

Maximum precision for minimum space requirements! RACO provides from double up to fourfold extension systems with smooth internal override. In combination with the integrated shock absorbing system a trouble free operation is guaranteed (Fig. 2).

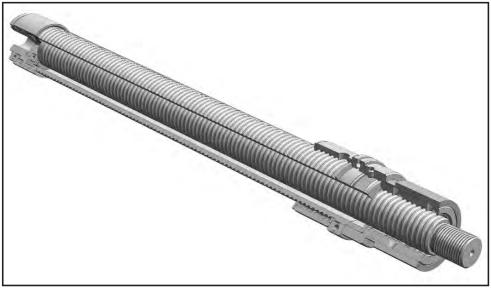



Fig. 2: Telescopic screw



#### Whatever you like

The range of available RACO ball screws leaves very little to be desired. Our standard program includes spindles with a diameter from 6 up to 200 mm and lengths ranging from 80 mm to 8000 mm - each of them with different profiles and in different classes of accuracy.

Smooth running, accurate positioning and high efficiency (good back driving) are the main benefits of our miniature ball screws. Nut is available with threaded end for easy mounting, with ball recirculation by integrated tube or inserts. It is typical that RACO accepts individual and special orders in line with our customers' demands: High-precision ball screws with a length of up to 14 m and with almost any profile required.

#### 3.3 Benefits of RACO Ball Screws

It is impossible to imagine modern machine tool and plant construction nowadays without ball screws. Wherever operations require high positioning accuracy at a high switching rate, these drive elements will have to be employed. A good example are robot systems. The precision achieved by RACO ball screws is the result of our long-standing development efforts and of the extreme care we take during the manufacturing itself. These depend on following characteristics:

#### **High Transfer Efficiency**

Realized by balls with free motion transfer of force and motion between screw and nut in the ball screw assembly. This transfer replaces the traditional direct function wise between screw and nut. Therefore the minimum rolling friction takes place instead of sliding friction. The transfer efficiency of ball screw will reach more than 95%. The drive torque of transfer unit reduces to 1/3 of sliding screw. This greatly reduces the heating.

#### **High Positioning Accuracy**

Means that the ball screw has a low heat rate and small temperature increase to provide high positioning accuracy due to any operation procedure. In the machining the measures have been taken to prolong and preload so as to avoid axial clearance.

#### **High Speed**

The internal nut design has been optimized to obtain highest speeds effected by short ball return transfer rates, via straight overflow inserts.



#### **Precise Reversibility**

Ball screw has not sticky friction like sliding screw. It clears crawl which exist during transference. Ball screw can realize two transfer wise-from rotary motion to linear motion and from linear to rotary motion- and transfer momentum.

#### **Ultra Power**

The internal design has been optimized to obtain ultimate static and dynamic capacities which are much higher than the standard range. Furthermore more the load capacity is independent of lead. The maximum load should not be applied on the nut mounting bolts but on the flange.

#### **Good Synchronization**

Due to smooth running, avoidance of axial clearance and consistency of manufacture, several sets of ball screws can drive the same unit or several the same parts.

#### **High Load Capacity**

RACO-ball screws can be strained in axial direction as well and as radial direction. Even guidance characteristics can be realized without any additional support.

#### **Resistance against worth Ambient Conditions**

Wide range of temperature gradients and contamination of dirt can be tolerated without loss of precision or sign of wear.

#### **Many Options**

Rebuilds according to samples or customized design acc. to drawings are available within a short delivery time. Only our standard materials various of special materials as high alloyed, corrosion and acid resistant steel can be used.

#### **Long Service Life**

Because of strict control of shape of running track, surface hardness and material, the actual life of ball screw is much longer than sliding screw.



#### 4 PRECISION BALL SCREWS / TECHNOLOGY

Ball screws are mechanism for changing rotary into linear motion and vice versa (Fig. 3). A ball screw assembly consists of the actual screw, the nut assembly with crossover for the return of the balls and the rolling balls. The balls roll in helical tracks in the screw and nut and form the only connection between them.

The force transmitted is spread over a number of balls, so that the contact stress is relatively low. The rolling friction between the ball screw and nut results in an extremely low coefficient of friction.



Fig. 3: Principle of operation of a ball screw

#### **Features & Benefits**

The advantages over screws with sliding friction are overwhelming. Precision ball screws have an efficiency of nearly 98% compared with 30% for conventional screws, with a corresponding reduction in the power of the drive required.

Even where the power consumption does not represent a crucial consideration, the larger dimensions of a motor cannot always be accommodated.

#### **Further advantages**

The service life is several times as great as that of a conventional screw. The heat generated is appreciably less, which enables higher traverse speeds to be obtained.

These factors already compensate largely for the higher cost of a ball screw, although in some cases the fact that ball screws are not irreversible, self locking drives must be taken into consideration.

With sliding friction, the phenomenon of intermittent stickslip motion tends to occur at low sliding speeds (creep speeds), even if the screw is driven at a uniform and constant speed. This undesirable stick-slip effect does not happen with rolling friction, so that positioning can be achieved with great repetitive accuracy.



#### 4.1 Main fields of application

The extremely high precision of the RACO ball screws makes them eminently suitable for metrology and control equipment, which is of decisive importance in the following fields of application:

- Machine tools
- Aero-space industry
- Nuclear Reactors
- Mechanical handling applications
- Medical devices
- Military equipment
- Measuring and testing equipment
- Transportation equipment
- and your individual application

#### 4.2 Track Profile

An optimum pointed arch track profile (Fig. 4) is produced by RACO.

This profile has the greatest possible contact angle ß and good lubrication properties. Together with a ball diameter calculated to suit each application, it offers the following advantages:

- Maximum load capacity and hence long service life
- Optimum running properties
- Efficiencies up to 98%
- Optimum stiffness
- Nearly constant driving torque

The depth of induction hardening permits subsequent regrinding to larger ball diameter, so that in the event of damage a new ball screw is not necessary.

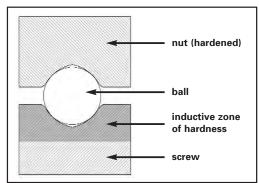



Fig. 4: RACO pointed arch track profile



#### 4.3 Ball Return System

A crossover piece between each pair of adjacent threads returns the balls to the preceding thread for constant recirculation.

After considering external return systems, extensive research work has led us to adopt a "S shaped" and furthermore a straight crossover piece. For standard leads this straight crossover piece is covered by German Federal Patent No. 2 149 392 and other foreign patents (Fig. 4 plug type "S shaped" crossover piece).

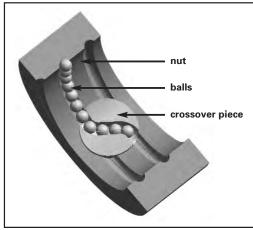



Fig. 5: RACO crossover piece (plug type)

For large lead angles, the straight key type crossover piece (German Federal patent No. 2 149 392) as shown in Fig. 6 is used.

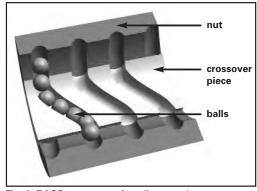



Fig. 6: RACO crossover piece (key type)

The RACO Ball Return System offers the following advantages

- Compact design with small overall dimensions
- High efficiency
- Nuts with 1 to 8 threads
- Very smooth and quiet running due to the geometric shape
- High permissible speeds of rotation
- Long service life
- Shortest possible crossover & therefore the maximum number of load carrying balls.



#### 4.4 Axial play

Like ball bearings, ball screws with a single nut have an axial play ranging from 0.02 to 0.1 mm depending on their size. This play is constant irrespective of the load (Fig. 7).

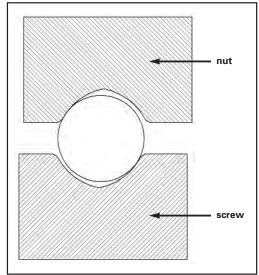



Fig. 7: Axial play with a single nut

The load produces an elastic deformation of the materials with a hysteresis characteristic, which results in an additional axial displacement (Fig. 8).

The special geometry of track and ball provides through its high grade of osculation (contact ratio of ball & shaft) a maximum load capacity in addition with an excellent smooth running characteristic.

By the selection and combination of the choosen materials we guarantee a long lasting operation period of the track profile.

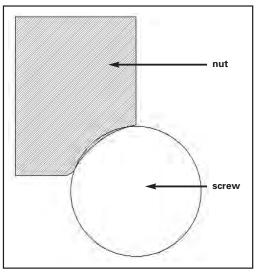



Fig. 8: Axial displacement



#### 4.5 Preloading of Nut Assemblies

Nuts are preloaded in order to eliminate axial play and to keep the axial displacement due to the deformation of the materials as small as possible (Fig. 9).

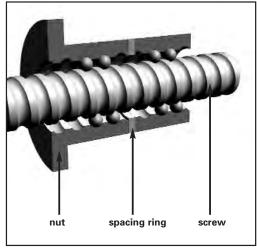



Fig. 9: Preloading of nut assembly

Two different kinds of preloads can be imposed:

#### O-type preload

The spacing ring forces the nuts apart and thus produces the preload. The preload is transmitted by an 0 shaped configuration. The part of the screw under preload is in tension (Fig. 10).

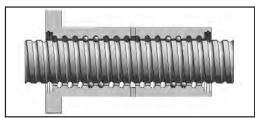



Fig. 10: 0-type preload

#### X-type preload:

The nuts are pressed towards each other in their housing by a ring nut to produce the preload. The spacing ring limits the amount of preload which can be applied. The preload is transmitted by an X shaped configuration. The part of the screw under preload is in compression (Fig. 11).

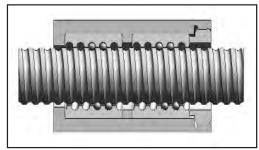



Fig. 11: X-type preload



#### 5 STRUCTURE TYPE OF NUT ASSEMBLIES

#### Single plain cylindrical nut Series A

Nut of simple design contained in housing. Prevented from rotation by key (Fig. 12).



Fig. 12: Single plain cylindrical nut

### Double plain cylindrical nut Series C

The nuts are pressed towards each other in their housing by a ring nut and are thereby subjected to an X type preload. The spacing ring limits the amount of preload. Subsequent adjustment of the preload by means of the ring nut without changing of the spacing ring is only possible to a limited extent. Otherwise dismantling and modification or replacements of the spacing ring are necessary (Fig. 13).

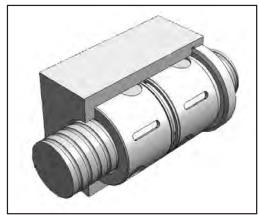



Fig. 13: Double plain cylindrical nut



#### Single Flange Nut Series E

Simple installation due to attachment by a flange. No housing is necessary (Fig. 14).

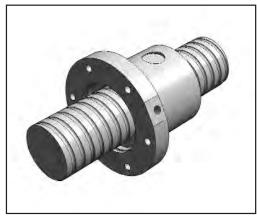



Fig. 14: Double flange nut

# Back to back arrangement Series G

The nuts are pressed towards each other when bolting the flanges to the machine, so that an X type preload is obtained. An increase or readjustment of the preload because of wear is only possible by fitting a spacing ring of reduced thickness (Fig. 15).

The nuts can be dowelled together at the required preload in our works.

The installation of the complete unit is simple.



Fig. 15: Double flange nut



#### Double Nut with vernier adjustment Series I

The two nuts have different numbers of external teeth. Rotation of the two nuts in the same direction through an equal number of teeth results in a differential movement which induces an 0 type preload. The nuts are located axially by the abutment in the housing (Fig. 16).

The smallest increment in preload is obtained by turning the two nuts in the same direction through one tooth each. The setting of the preload is accurate and secured positively. Adjustment to the preload can only be made by dismantling the complete unit.

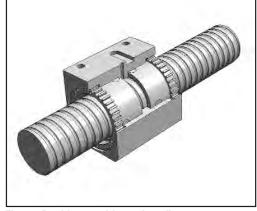



Fig. 16: Double nut with vernier adjustment

# Double flanged nut with preload adjustment (Registered design No. 7 708 184) Series L

The 0 type preload is set by turning the nuts against each other by means adjusting screws. Axial spacing is maintained by a spacing ring. Initial setting and readjustment of the preload is very accurate, simple and possible without dismantling (Fig. 17).

The installation of the nut assembly is very simple due to the flange attachment. The assembly has a high stiffness due to the direct attachment without housing.

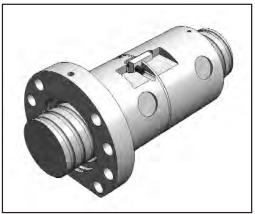



Fig. 17: Double flanged nut with preload adjustment



# Flanged nut with preload adjustment Series N

The 0 type preload is set by turning the nuts against each other by means of adjusting screws. Simple, step less and accurate initial setting and readjustment of the preload, even without dismantling (Fig. 18).

This assembly has a high stiffness due to the direct flange attachment and the compact design. Attachment by flange is easy and rapid.



Fig. 18: Flanged nut with preload adjustment

#### Double flanged nut with preload adjustment Outward facing flanges Series Q

The 0 type preload is obtained by turning the nuts against each other by means of adjusting screws. The housing is made to the customer's drawing. Initial setting and subsequent readjustment of the preload is very accurate, simple and possible without dismantling of the nut assembly (Fig. 19).

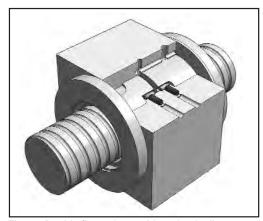



Fig. 19: Double flanged nut with preload adjustment, outward facing flanges



Single nut with zero backlash (German Federal patent No. 3 209 086) Series R

The newly developed geometry of the thread profile of the nut with modified lead produces the preload and ensures also uniform load distribution on the individual threads. This means high load carrying capacity and increased service (Fig. 20).

This unit required appreciably less space than preloaded double nut assemblies.



Fig. 20: Preloaded single nut with zero backlash (with and without flange)



#### **6 PROTECTION SYSTEMS / WIPERS**

As ball screws are sensitive to dirt and chips, they should invariably be protected by well fitting covers like concertina covers or telescopic springs. The nut assembly can also be equipped with wipers.

As inferred by the name, the wipers wipe off contaminants and are therefore in no way comparable to a seal. The wipers are either made of elastic material or are able to move radially, so that they fit thread profile as closely as possible. This in turn means that the wipers are subject to wear and have a limited life, so that they have to be replaced at appropriate time intervals, depending on the application and the degree of contamination.

#### 6.1 Brush wiper

The profiled brush wiper surrounds the ball track/grove and the outer diameter of the screw (Fig. 21). This design is the long lasting solution and preferred to prevent the intake of dirt even under the worst operating conditions. Further special designs are available on request!

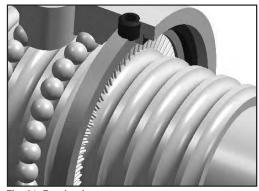



Fig. 21: Brush wiper

#### 6.2 Felt wiper

The profiled felt ring surrounds the ball track and the outer diameter of the screw. This design is preferred where the nut is filled with grease (Fig. 22). Other special designs are available on request!

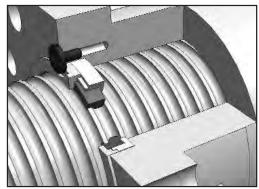



Fig. 22: Felt wiper



#### 6.3 Plastic wiper

The spring presses the profiled nylon plunger onto the ball track. This type of design covers the major part of the application (Fig. 23).

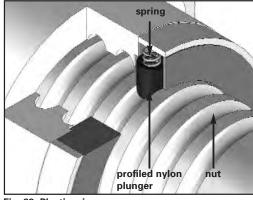
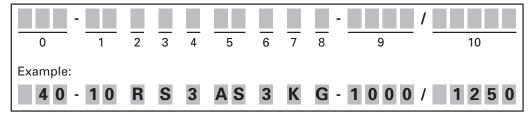




Fig. 23: Plastic wiper



#### 7 TYPE CODE / TECHNICAL DATA

#### 7.1 Type Code for Ball Screws



| Space No. | Type designation     | Key                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Diameter             | d <sub>1</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1         | Lead                 | P [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2         | Lead Orientation     | R = right hand lead<br>L = left hand lead                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3         | Track profile        | S = pointed arch profile R = groove profile Z = special profile                                                                                                                                                                                                                                                                                                                                                                                             |
| 4         | Lead accuracy class  | [ 0, 1, 3 , 5, 7]<br>(<6 , 6, 12, 23, 52 micron/300 mm)                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5         | Type of nut          | A = single plain cylindrical nut C = double plain cylindrical nut E = single flange nut G = double flange nut back-to-back arrangement I = double nut with vernier adjustment L = double flange nut with preload adjustment N = flange nut with preload adjustment Q = double flange nut with preload adjustment R = single nut with zero backlash T = short travel ball screw assembly Z = special design S = dimensions of nut deviate from RACO standard |
| 6         | Threads              | Number of load carrying threads per nut                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7         | Wiper                | B = brush wiper F = felt wiper K = plastic wiper Z = special wiper                                                                                                                                                                                                                                                                                                                                                                                          |
| 8         | Housing              | G = with housing<br>X = without housing                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9         | Thread length        | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10        | Screw overall length | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



#### 7.2 RACO standard delivery program & preferential types

| d <sub>1</sub> P | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 | 32 | 40 | 48 | 0,2" | 0,25" | 0,4" | 0,5" | 1" |
|------------------|---|-----|---|---|---|---|---|----|----|----|----|----|----|----|----|------|-------|------|------|----|
| 8                | • | •   | • | • |   |   |   |    |    |    |    |    |    |    |    |      |       |      |      |    |
| 10               | ٠ | •   | • | • |   |   |   |    |    |    |    |    |    |    |    |      |       |      |      |    |
| 12               | • | •   | • | • |   |   |   |    |    |    |    |    |    |    |    |      |       |      |      |    |
| 16               | • | •   | • | • | • | • | • | •  |    |    |    |    |    |    |    | •    | •     | •    | •    |    |
| 20               | • | •   | • | • | • | • | • | •  | •  |    |    |    |    |    |    | •    | •     | •    | •    |    |
| 22               | • | •   | • | • | • | • | • | •  | •  |    |    |    |    |    |    | •    | •     | •    | •    |    |
| 25               | • | •   | • | • | • | • | • | •  | •  | •  |    |    |    |    |    | •    | •     | •    | •    |    |
| 30               | • | •   | • | • | • | • | • | •  | •  | •  |    |    |    |    |    | •    | •     | •    | •    |    |
| 32               | • | •   | • | • | • | • | • | •  | •  | •  | •  |    |    |    |    | •    | •     | •    | •    |    |
| 37               | • | •   | • | • | • | • | • | •  | •  | •  | •  |    |    |    |    | •    | •     | •    | •    |    |
| 40               | • | •   | • | • | • | • | • | •  | •  | •  | •  | •  |    |    |    | •    | •     | •    | •    | •  |
| 50               |   |     |   | • | • | • | • | •  | •  | •  | •  | •  | •  |    |    | •    | •     | •    | •    | •  |
| 60               |   |     |   | • | • | • |   | •  | •  | •  | •  | •  | •  |    |    | •    | •     | •    | •    | •  |
| 63               |   |     |   | • | • | • | • | •  | •  | •  | •  | •  | •  | •  |    | •    | •     | •    | •    | •  |
| 70               |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  |    | •    | •     | •    | •    | •  |
| 75               |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  |    | •    | •     | •    | •    | •  |
| 80               |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  | •  | •    | •     | •    | •    | •  |
| 100              |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  | •  | •    | •     | •    | •    | •  |
| 125              |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  | •  | •    | •     | •    | •    | •  |
| 160              |   |     |   |   | • | • | • | •  | •  | •  | •  | •  | •  | •  | •  | •    | •     | •    | •    | •  |
| 200              |   |     |   |   |   |   |   | •  |    |    | •  |    |    | •  | •  |      |       | •    | •    |    |

RACO delivery program

RACO preferential types





#### Single plain cylindrical nut Series A Double plain cylindrical nut Series C

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

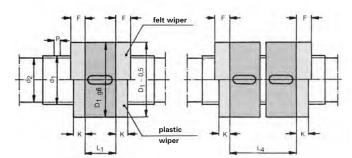
P = lead [mm]

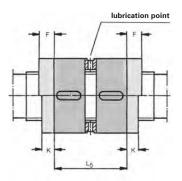
i = number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


 $C_i$  = dynamic load rating for


i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 5) | Ì  |      |                   |      | E      |          | i=1/f=1 | 1- |                  | = !    | i = 2/f = 1,625 | 1,625 |      | <u>"</u> | i = 3 / f = 2,158 | - 2,158 | Š   | = !    | 4/f= | i = 4 / f = 2,639 |     | -      | =5/f | i = 5 / f = 3,085 | 2   |        | 1/9= | i = 6 / f = 3,505 | 92  | 4     | 4     |
|----|----|------|-------------------|------|--------|----------|---------|----|------------------|--------|-----------------|-------|------|----------|-------------------|---------|-----|--------|------|-------------------|-----|--------|------|-------------------|-----|--------|------|-------------------|-----|-------|-------|
| ď  | ۵  | ď    | D, g <sup>6</sup> | ¥    | F Slot |          | Ľ       | -  | L <sub>5</sub> S | Slot   | 7               | L.    | ٦    | Slot     | ī                 | 7       | Ls  | Slot   | 7    | L4                | Ľ   | Slot   | 7    | ۲                 | ۲   | Slot   | Ţ    | Ľ                 | ٦   | υ     | ပ်    |
| 9  | ω  | 14,6 | 30                | 101  | 10 3×  | 3 x 10 1 | 14      | 29 | 34               | 3 x 18 | 22              | 47    | 52   |          |                   |         |     |        |      |                   |     |        |      |                   |     |        |      |                   |     | 6577  | 5019  |
| 20 | 2  | 16   | 36                | 10 1 | 10 6 x | 6 x 10 1 | 14 2    | 3  | 34 6             | 6 x 18 | 22              | 47    | 52 6 | 6 x 20   | 28                | 28      | 63  | 6 x 28 | 34   | 69                | 74  |        |      |                   |     |        |      |                   |     | 8181  | 8740  |
| T  | ro | 12   | 40                | 101  | 10     |          |         |    | 9                | 6 x 18 | 22              | 47    | 52 6 | 6 x 22   | 28                | 28      | 63  | 6 x 28 | 34   | 69                | 74  | 6 x 32 | 38   | 78                | 83  |        | -    |                   |     | 8769  | 11346 |
| 22 | 10 | 51   | 40                | 101  | 14     |          |         |    | 9                | 6 x 32 | 39              | 79    | 89   | 6 x 45   | 15                | E E     | 111 |        |      |                   |     |        |      |                   |     |        |      |                   |     | 8439  | 10710 |
|    | c) | 28   | 20                | 101  | 10     | +        | +       | -  | 9                | 6 x 18 | 22              | 47    | 52   | 6 x 22   | 28                | 58      | 63  | 6 x 28 | 8    | 69                | 74  | 6 x 32 | 38   | 78                | 83  | 6 x 36 | 44   | 88                | 94  | 9045  | 13981 |
| 32 | 10 | 28   | 90                | 101  | 41     |          |         |    | 9                | 6 x 32 | 39              | 62    | 88   | 6 x 45   | 51                | 111     | 111 | 6 x 56 | 92   | 135               | 135 |        |      |                   |     |        |      |                   |     | 11624 | 16110 |
|    | n  | 36   | 99                | 101  | 10     |          | 17      |    | 9                | 6 x 18 | 22              | 47    | 52 6 | 6 x 22   | 28                | 58      | 63  | 6 x 28 | 34   | 69                | 74  | 6 x 32 | 38   | 78                | 83  | 6 x 36 | 44   | 88                | 94  | 10182 | 19174 |
| 40 | 10 | 31,4 | 99                | 101  | 14     |          | -       |    | 9                | 6 x 32 | 39              | 62    | 89   | 6 x 45   | 51                | 11      | 111 | 6 x 56 | 65   | 135               | 135 | 6 x 63 | 71   | 151               | 151 |        |      |                   |     | 29318 | 38372 |
|    | 20 | 36   | 70                | 10   | 24     |          |         |    | 9                | 6 x 40 | 20              | 110 1 | 110  |          |                   |         |     |        |      |                   |     |        |      |                   |     |        |      |                   |     | 12848 | 21620 |
|    | 2  | 46   | 75                | 101  | 10     |          | -       | -  | 9                | 6 x 18 | 22              | 47    | 52 6 | 6 x 22   | 28                | 58      | 63  | 6 x 28 | 34   | 69                | 74  | 6 x 32 | 38   | 78                | 83  | 6 x 36 | 44   | 88                | 94  | 10954 | 24402 |
| 20 | 10 | 41,4 | 75                | 10   | 14     |          |         |    | 9                | 6 x 32 | 39              | 62    | 89   | 6 x 45   | 51                | 111     | 111 | 95 x 9 | 65   | 135               | 135 | 6 x 63 | 71   | 151               | 151 | 6×70   | 83   | 173               | 173 | 30365 | 47000 |
|    | 20 | 41.4 | 80                | 10   | 24     | _        |         |    | 9                | 6 x 40 | 20              | 110   | 110  | 6 x 63   | 20                | 150     | 150 |        |      |                   |     |        |      |                   |     |        |      |                   |     | 30364 | 46999 |





#### Single plain cylindrical nut Series A Double plain cylindrical nut Series C

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches) Housing to customer drawings can be supplied by RACO. Tolerances not explicitly stated conform to German standard Din 7168. Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

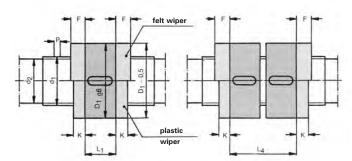
S = travel [mm]

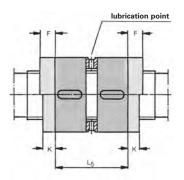
= lead [mm]

= number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

= dynamic load rating


(total) [N]


C<sub>i</sub> = dynamic load rating for

i = 1[N]C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1)2) |    | 1)2)  |                   |    |    |      | i=1/f=1 | 1  |    | 1      | = 2/f = 1,625 | - 1,625 | ľ   | =      | =3/f= | = 2,158 | Į   | -       | =4/t= | = 2,639 |     | -       | =5/1 | 5/f = 3,085 | 2   | _       | = 6/f= | 1 = 3,505 | 15  | 4      | 4      |
|------|----|-------|-------------------|----|----|------|---------|----|----|--------|---------------|---------|-----|--------|-------|---------|-----|---------|-------|---------|-----|---------|------|-------------|-----|---------|--------|-----------|-----|--------|--------|
| ď,   | Ь  | ď     | D, g <sup>6</sup> | ×  | ш  | Slot | L, L,   | L4 | Ls | Slot   | ۲             | L4      | Ls  | Slot   | 7     | L4      | Ls  | Slot    | Ľ     | Ľ       | Ls  | Slot    | Ľ    | L4          | Ls  | Slot    | ۲.     | Ľ         | Ls  | ວັ     | ပိ     |
|      | 9  | 69    | 06                | 10 | 10 |      |         |    |    | 81 x 9 | 22            | 47      | 52  | 6 x 22 | 28    | 28      | 63  | 6 x 28  | 34    | 69      | 74  | 6 x 32  | 38   | 78          | 83  | 8 x 36  | 44     | 68        | 94  | 11602  | 30298  |
| 83   | 10 | 54,4  | 90                | 10 | 14 |      |         |    |    | 6 x 32 | 39            | 62      | 89  | 6 x 45 | 51    | 111     | 111 | 92 × 9  | 92    | 135     | 135 | 6 x 63  | 71   | 151         | 151 | 6×70    | 83     | 173       | 173 | 33854  | 64052  |
|      | 20 | 50,2  | 98                | 16 | 24 |      |         |    |    | 6 x 63 | 72            | 152     | 152 | 6×70   | 96    | 195     | 195 | 02×9    | 114   | 234     | 234 |         |      |             |     |         | 1      |           |     | 64343  | 89702  |
|      | 10 | 71,4  | 105               | 10 | 14 |      |         |    |    | 6 × 32 | 39            | 62      | 68  | 6 x 45 | 51    | 111     | 111 | 95 × 9  | 99    | 135     | 135 | 6 x 63  | 71   | 151         | 151 | 6×70    | 83     | 173       | 173 | 36064  | 81227  |
| 8    | 20 | 65,1  | 125               | 20 | 24 |      |         |    |    | 6×70   | 78            | 158     | 178 | 0 × 9  | 102   | 222     | 222 | 6 x 100 | 118   | 238     | 258 | 6 x 100 | 142  | 302         | 302 |         |        |           |     | 92563  | 144782 |
| P    | 10 | 16    | 125               | 10 | 41 |      |         |    |    | 6 x 32 | 39            | 62      | 89  | 6 x 45 | 55    | 111     | 111 | 6 x 56  | 99    | 135     | 135 | 6 x 63  | K    | 151         | 151 | 6×70    | 83     | 173       | 173 | 38440  | 101264 |
| 8    | 20 | 84,7  | 150               | 20 | 24 |      |         |    |    | 6 × 70 | 78            | 158     | 178 | 6 x 70 | 102   | 222     | 222 | 6 x 100 | 118   | 238     | 258 | 6 x 100 | 142  | 305         | 305 | 6 x 100 | 165    | 345       | 345 | 86886  | 184890 |
|      | 10 | 116,4 | 150               | 9  | 41 | 1    |         |    |    | 6 x 32 | 39            | 62      | 68  | 6 x 45 | 15    | 111     | 111 | 6 x 56  | 99    | 135     | 135 | 6 x 63  | 71   | 151         | 151 | 6 × 70  | 83     | 173       | 173 | 42368  | 132702 |
| 125  | 20 | 110,1 | 170               | 20 | 24 |      |         |    |    | 6 x 70 | 78            | 158     | 178 | 6×70   | 102   | 222     | 222 | 6 x 100 | 118   | 238     | 258 | 6 x 100 | 142  | 305         | 305 | 6 x 100 | 165    | 345       | 345 | 105612 | 235119 |
|      | 10 | 151,4 | 185               | 10 | 41 |      |         |    |    | 6 x 32 | 39            | 79      | 68  | 6 x 45 | 51    | 111     | 111 | 6 x 56  | 99    | 135     | 135 | 6 x 63  | 7    | 151         | 151 | 6×70    | 83     | 173       | 173 | 45680  | 165672 |
| 9    | 20 | 145,1 | 210               | 20 | 24 |      |         |    |    | 6 x 70 | 78            | 158     | 178 | 6 x 70 | 102   | 222     | 222 | 6 x 100 | 118   | 238     | 258 | 6 x 100 | 142  | 305         | 302 | 6 x 100 | 165    | 345       | 345 | 114100 | 305463 |
| Ē    | 10 | 191,4 | 225               | 10 | 14 |      |         |    |    | 6 x 32 | 39            | 62      | 68  | 6 x 45 | 15    | 111     | 111 | 6 x 56  | 99    | 135     | 135 | 6 x 63  | 71   | 151         | 151 | 6 x 70  | 83     | 173       | 173 | 49628  | 210380 |
| 8    | 20 | 185,1 | 250               | 20 | 24 |      |         |    |    | 6×70   | 78            | 158     | 178 | 0×9    | 102   | 222     | 222 | 6 x 100 | 118   | 238     | 258 | 6 x 100 | 142  | 302         | 305 | 6 x 100 | 165    | 345       | 345 | 122627 | 385876 |
|      |    |       |                   | Ī  |    |      |         |    |    |        |               |         | ĺ   |        |       |         |     |         |       |         |     |         |      |             |     |         |        |           |     |        |        |





# Single Flange Nut Series E Back to back arrangement Series G

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

P = lead [mm]

i = number of load

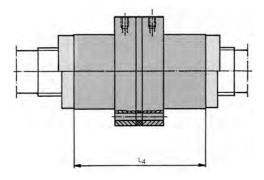
carrying threads in nut

 $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


 $C_i$  = dynamic load rating for

i = 1 [N] C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1) 2)<br>d <sub>1</sub>                                           | 9    | 8    |       | ĸ     |       | 33    | K     | 8     |       | 1     | 22    | 3     |
|-------------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ۵                                                                 | 2    | 20   | 5     | 9     | 25    | 10    | 5     | 9     | 20    | 5     | 10    | 20    |
| 1) 2)<br>d <sub>2</sub>                                           | 14,6 | 16   | 23    | 12    | 28    | 28    | 36    | 31,4  | 36    | 46    | 41,4  | 41.4  |
| D, g <sup>6</sup>                                                 | 30   | 98   | 40    | 40    | 20    | 20    | 99    | 99    | 70    | 75    | 75    | 80    |
| o <sup>*</sup>                                                    | 38   | 47   | 5     | 51    | 65    | 65    | 80    | 80    | 85    | 93    | 93    | 86    |
| D                                                                 | 5,5  | 9,6  | 9,9   | 9'9   | o     | 6     | 6     | 6     | 6     | 11    | 11    | =     |
| De                                                                | 48   | 58   | 62    | 1 1 2 | 80    |       | 95    | 98    | 100   | 110   | 110   | 115   |
| ×                                                                 | 101  | 101  | 101   | 10    | _     | 10 1  | 101   | 10    | 10    | 10    |       |       |
| E                                                                 | 01   | 01   | 10    | 4     | 9     | 14    | 10    | 14    | 24    | 10    | 14    | 24    |
| ر<br>د                                                            | 20   | 20   | 5     | 20    | 9     | 9     | 7 1   | 7     | 7 1   | 8     | 1 8   | 8     |
| 1 1                                                               | 8    | 4    | 8     | 8     | 8     | 8     | 10 7  | 10 7  | 10 7  | 10 8  | 10 8  | 10 8  |
| اد                                                                | 40   | 44   | 48    | 48    | 29    | 62    | 70 8  | 70 8  | 70 8  | 85 9  | 85 9  | 85 9  |
| 9                                                                 | 4    | 10   | 55    | 22    | 12    | 71    | 82,5  | 82,5  | 82,5  | 97,5  | 97,5  | 97,5  |
|                                                                   | 4    | 4    |       |       | t     |       |       |       |       |       |       |       |
| i=1/f=1                                                           | 24   | 54   |       |       |       |       |       |       |       |       |       |       |
| 7                                                                 | 51   | 15   |       |       |       |       |       |       |       |       |       |       |
| i = 2 / f = 1,625<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> | 22   | 8    | 22    | 39    | 22    | 39    | 22    | 39    | 46    | 22    | 39    | 44    |
| L=1,                                                              | 32   | 88   | 32    | 64    | 34    | 21    | 36    | 53    | 09    | 38    | 55    | 09    |
|                                                                   | 29   | 29   | 29    | 101   | 72    | 106   | 75    | 112   | 126   | 62    | 116   | 126   |
| 1=3/f=2,158<br>L, L <sub>2</sub> L <sub>4</sub>                   |      | 88   | 28    | 51    | 28    | 12    | 28    | 51    |       | 28    | 51    |       |
| L2 -                                                              |      | 88   | 38    | 19    | 40    | 63    | 45    | 99    |       | 44    | 29    |       |
| L 38                                                              |      | 62   | 79    | 125   | 84    | 130   | 87    | 136   |       | 91    | 140   |       |
| = 4<br> <br> -                                                    |      | 25   | 34    |       | 88    | 99    | 34    | 65    |       | 34    | 65    |       |
| i=4/f=2,639<br>L, L <sub>2</sub> L <sub>4</sub>                   |      | 44   | 44    |       | 46    | 11    | 48    | 62    |       | 20    | 18    |       |
| ,639<br>L,4                                                       |      | -6   | 16    |       | 96    | 158   | 66    | 164   |       | 103   | 168   |       |
| i=5                                                               |      |      | 38    |       | 38    |       | 38    | 71    |       | 38    | 71    |       |
| i=5/f=3,085<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub>       |      |      | 48    |       | 20    |       | 52    | 85    |       | 54    | 87    |       |
|                                                                   |      |      | 66    |       | 104   |       | 107   | 176   |       | 111   | 180   |       |
| i = 6 / f = 3,505<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> |      |      |       |       | 4     |       | 44    |       |       | 44    | 83    |       |
| L = 3                                                             |      |      |       |       | 99    |       | 58    |       |       | 09    | 66    |       |
| L 505                                                             |      |      |       |       | 116   |       | 119   |       |       | 123   | 204   |       |
| €Q                                                                | 2229 | 8181 | 8769  | 8439  | 9045  | 11624 | 10182 | 29318 | 12848 | 10954 | 30365 | 30365 |
| € Ω                                                               | 5019 | 8740 | 11346 | 10710 | 13981 | 16110 | 19174 | 38372 | 21620 | 24402 | 47000 | 47000 |





# Single Flange Nut Series E Back to back arrangement Series G

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü ≥ 5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

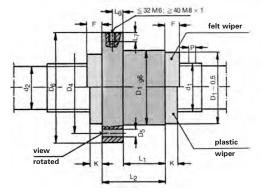
P = lead [mm]

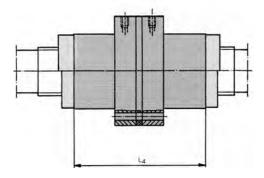
i = number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


C<sub>i</sub> = dynamic load rating for


i = dynamic i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1) 2)<br>d, | ۵  | 1 5 q 2 | D <sub>1</sub> g <sup>6</sup> | õ   | Ds   | D <sub>e</sub> | ×    | F 3   | ر<br>د 3 | ۲, ا  | L <sub>e</sub> | Ĵ     | <u>-</u> - | i=1/f=1<br>, |     | i=2/f=<br>L, L <sub>2</sub> | = 1,625<br>2   L4 | - <u>-</u> | = 3/t= | 3/f = 2,158<br>$  L_2   L_4$ |       | 4/f=<br>L2 | i = 4/f = 2,639<br>$L_1 \mid L_2 \mid L_4$ | _    | i=5/f=<br>L, L2 | 3,085<br>L | <u>.</u> _ | 6/f=<br> <br> L2 | 3,505 | €0     |        |
|-------------|----|---------|-------------------------------|-----|------|----------------|------|-------|----------|-------|----------------|-------|------------|--------------|-----|-----------------------------|-------------------|------------|--------|------------------------------|-------|------------|--------------------------------------------|------|-----------------|------------|------------|------------------|-------|--------|--------|
|             | 5  | 59      | 90                            | 108 | 11   | 125            | 101  | 10 8  | 1 6      | 10 9  | 95 1           | 110   |            |              | cv  | 22 40                       | 0 83              | 3 28       | 3 46   | 95                           | 34    | 52         | 107                                        | 38   | 56              | 115        | 44         | 62               | 127   | 11602  |        |
| 83          | 10 | 54,4    | 90                            | 108 | 11   | 125            | 10   | 14 8  | 9 1      | 10 9  | 95 1           | 110   |            |              | (r) | 39 57                       | 7 117             | 7 51       | 69     | 141                          | 1 65  | 83         | 169                                        | 71   | 89              | 181        | 83         | 101              | 205   | 33854  |        |
|             | 20 | 50,2    | 98                            | 115 | 13,5 | 135            | 16 2 | 24 1  | 10 1     | 10 1  | 1001           | 117,5 |            |              | 7   | 72 92                       | 2 186             | 6 95       | 115    | 5 232                        | 114   | 134        | 170                                        | 0    |                 |            |            |                  |       | 64343  | -      |
| -           | 10 | 71,4    | 105                           | 125 | 13,5 | 145            | 10 1 | 14 1  | 10 1     | 10 1  | 110 12         | 127,5 |            |              | (5) | 39 59                       | 9 121             | 1 51       | 17     | 145                          | 9 9   | 85         | 173                                        | 3 71 | 91              | 185        | 83         | 103              | 209   | 36064  | 81227  |
| 8           | 20 | 65,1    | 125                           | 145 | 13,5 | 165            | 20 2 | 24 12 | 12,5 1   | 10 13 | 30 17          | 47,5  |            |              | 7   | 78 10                       | 03 210            | -          | 02 127 | 7 258                        | 8 118 | 3 143      | 3 290                                      | 142  | 167             | 338        |            |                  |       | 92563  | 144782 |
| 1           | 10 | 91      | 125                           | 145 | 13,5 | 165            | 101  | 14 1  | 11       | 10    | 130 14         | 147,5 |            |              | 65  | 39 61                       | 1 125             | 5 51       | 73     | 149                          | 9 65  | 87         | 177                                        | 7 71 | 93              | 199        | 83         | 105              | 213   | 38440  | 101264 |
| 8           | 50 | 84,7    | 150                           | 176 | 17,5 | 202            | 20 2 | 24    | 15       | 10    | 155 17         | 178,5 |            |              |     | 78 10                       | 08 220            | -          | 02 132 | 2 268                        | 8 118 | 3 148      | 300                                        | 142  | 172             | 348        | 165        | 195              | 394   | 86886  | 184890 |
| 3           | 10 | 116,4   | 150                           | 176 | 17,5 | 202            |      | 14 12 | 12,5     | 10    | 155 17         | 178,5 |            |              | (1) | 39 64                       | 131               | 1 51       | 1 76   | 155                          | 59    | 96         | 183                                        | 7    | 96              | 195        | 83         | 108              | 219   | 42368  | 132702 |
| 125         | 20 | 110,1   | 170                           | 196 | 17.5 | 222            | 20 2 | 24 1  | 15 1     | 1.0   | 175 18         | 198,5 |            |              |     | 78 10                       | 08 220            | -          | 02 132 | 2 268                        | 8 118 | 3 148      | 300                                        | 142  | 172             | 348        | 165        | 195              | 394   | 105612 | 235119 |
| 1           | 10 | 151,4   | 185                           | 212 | 17.5 | 240            | 101  | 14 1  | 15 1     | 10 1  | 061            | 215   |            | +            | (6) | 39 69                       | 9 141             | 1 51       | -8     | 165                          | 5 65  | 98         | 193                                        | 3 71 | 101             | 205        | 83         | 113              | 229   | 45680  | 165672 |
| 9           | 20 | 145,1   | 210                           | 243 | 22   | 275            | 20 2 | 24 2  | 20 1     | 10 21 | 2              | 245   |            |              | 7   | 78 118                      | 8 240             | -          | 02 142 | 2 288                        | 8 118 | 3 158      | 320                                        | 145  | 182             | 368        | 165        | 205              | 414   | 114100 | 305463 |
|             | 10 | 191,4   | 225                           | 260 | 22   | 295            | 101  | 14 2  | 20 1     | 10    | 230 26         | 262,5 |            |              | (4) | 39 79                       | 91 16             | 15         | 6      | 185                          | 5 65  | 105        | 5 213                                      | 7    | 11              | 225        | 83         | 123              | 249   | 49628  | 210380 |
| 200         | 20 | 185,1   | 250                           | 290 | 26   | 315            | 20 2 | 24 22 | 5        | 10 2  | 255 2          | 285   |            |              | -   | 78 12                       | 123 251           | -          | 02 147 | 7 299                        | 9 118 | 8 163      | 3 331                                      | 142  | 187             | 379        | 165        | 210              | 425   | 122627 | 385876 |
|             |    |         |                               |     |      | Ī              |      |       |          |       |                |       |            |              |     | _                           | _                 |            |        | _                            | _     | _          | _                                          |      |                 |            |            |                  |       |        |        |





#### **Double Nut with vernier adjustment Series I**

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

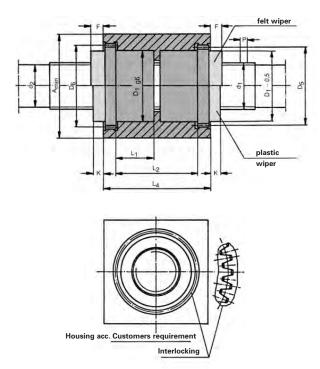
P = lead [mm]

i = number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


C<sub>i</sub> = dynamic load rating for

i = dynamic i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i



| 1)2) |    | 1) 2) |                               |      |       | 13 | _  |                  | =  | i=1/f=1 |    | i = 2/f = 1,625 | f=1, | _   | =3/  | i = 3/f = 2,158 | 28    | =4/ | f=2, | i=4/f=2,639 i=5/f=3,085 | = 5/ | f = 3,( |     | i = 6 / f = 3,505 | f=3, | 202 | 4)     | 4     |
|------|----|-------|-------------------------------|------|-------|----|----|------------------|----|---------|----|-----------------|------|-----|------|-----------------|-------|-----|------|-------------------------|------|---------|-----|-------------------|------|-----|--------|-------|
| 9    | 4  | _     | D <sub>1</sub> g <sub>o</sub> | ۵    | De    | ¥  | 4  | A <sub>min</sub> | 7  | 7       | 7  | 7               | 2    | L4  | ĭ    | 7               | L4    | 7   | 2    | r <sub>a</sub>          | 7    | 2       | ľ   | 7                 | 2    | L4  | ت<br>ت | ပိ    |
| 20   | 2  | 16    | 36                            | 39   | 39,5  | 9  | 9  | 47               | 4  | 36      | 25 | 22              | 25   | 89  | 58   | 64              | 80    |     |      |                         |      |         |     |                   |      | 11  | 8181   | 8740  |
|      | 5  | 21    | 40                            | 44   | 45    | 9  | 9  | 09               | 14 | 38      | 52 | 22              | 52   | 89  | 28   | 64              | 08    | 34  | 9/   | 92                      | 38   | 84      | 100 |                   |      | t   | 8769   | 11346 |
| 25   | 10 | 21    | 40                            | 44   | 45    | 10 | 14 | 09               | 55 | 28      | 74 | 66              | 98   | 102 | 51   | 110 1           | 126   |     |      |                         |      |         |     |                   |      |     | 8439   | 10710 |
|      | 5  | 28    | 47                            | 51   | 52    | 10 | 10 | 99               |    |         | T  | 22              | 54   | 74  | 28   | 99              | 98    | 34  | 78   | 86                      | 38   | 98      | 106 | 44                | 86   | 118 | 9045   | 13981 |
| 32   | 10 | 28    | 20                            | 54   | 65    | 9  | 4  | 20               |    |         |    | 39              | 06   | 110 | 12   | 114 1           | 134   | 65  | 142  | 162                     |      |         |     |                   |      |     | 11624  | 16110 |
|      | 2  | 36    | 55                            | 59   | 09    | 9  | 9  | 75               | 1  |         |    | 22              | 54   | 47  | 88   | 99              | 98    | 34  | 78   | 86                      | 38   | 86      | 106 | 44                | 86   | 118 | 10182  | 19174 |
| 8    | 10 | 31,4  | 99                            | 69   | 20    | 10 | 14 | 85               |    |         |    | 39              | 90   | 110 | 51   | 114 1           | 134   | 65  | 142  | 162                     | 71   | 154     | 174 |                   |      |     |        |       |
|      | 20 | 36    | 20                            | 74   | 75    | 10 | 24 | 90               |    |         |    | 42              | 96   | 116 |      |                 |       |     |      |                         |      |         |     |                   |      |     | 12848  | 21620 |
|      | 2  | 46    | 99                            | 69   | 02    | 10 | 10 | 85               |    |         |    | 22              | 99   | 92  | 28   | 89              | 88    | 34  | . 08 | 100                     | 38   | 1 88    | 108 | 44                | 100  | 120 | 10954  | 24402 |
| 20   | 10 | 41,4  | 75                            | 62   | 80    | 10 | 14 | 95               |    |         |    | 39              | 95   | 112 | 51   | 116 1           | 136   | 65  | 144  | 164                     | 71   | 156 1   | 176 | 83                | 180  | 200 | 30365  | 47000 |
|      | 20 | 41,4  | 80                            | 84   | 85    | 10 | 24 | 100              | 8  |         |    | 42              | - 86 | 118 | 62 1 | 138 1           | 158   |     |      |                         |      |         |     |                   |      |     | 30364  | 46999 |
|      | 5  | 69    | 80                            | 85,5 | 28    | 10 | 10 | 105              |    |         |    | 22              | 99   | 80  | 28   | 89              | 95    | 34  | . 08 | 104                     | 38   | 88      | 112 | 44                | 001  | 124 | 11602  | 30298 |
| 63   | 10 | 54,4  | 90                            | 96   | 97,5  | 10 | 14 | 125              |    |         |    | 39              | 95   | 116 | 51   | 116 1           | 140   | 65  | 144  | 168                     | 71   | 156 1   | 180 | 83                | 180  | 204 | 33854  | 64052 |
|      | 20 | 50,2  | 100                           | 105  | 106,5 | 16 | 24 | 135              |    |         |    | 72 1            | 160  | 184 | 95   | 206 2           | 230 1 | 114 | 244  | 268                     |      |         |     |                   |      |     | 64343  | 89702 |





#### **Double Nut with vernier adjustment Series I**

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches) Housing to customer drawings can be supplied by RACO. Tolerances not explicitly stated conform to German standard Din 7168. Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for  $f\ddot{u} \ge 5$ . Please consult us if  $f\ddot{u} < 5$ .

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

= lead [mm]

= number of load

carrying threads in nut

 $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

= dynamic load rating

(total) [N]

C<sub>i</sub> = dynamic load rating for i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i



Housing acc. Customers requireme

Interlocking

| 1)2) |    | 1)2)           | 1     |       |     |    |    | V    | i=1/f=1           | -  | i=2 | -#/            | 1,625 | i = 3 | /f=:           | 2,158 | 1=4 | 1=1            | 629 | = 5 | /f=3           | 982 | i=2/f=1,625 $i=3/f=2,158$ $i=4/f=2,639$ $i=5/f=3,085$ $i=6/f=3,505$ | 1=3 | 202 | 4      | 4      |
|------|----|----------------|-------|-------|-----|----|----|------|-------------------|----|-----|----------------|-------|-------|----------------|-------|-----|----------------|-----|-----|----------------|-----|---------------------------------------------------------------------|-----|-----|--------|--------|
| ď    | ۵. | d <sub>2</sub> | D, ge | Ds    | De  | ¥  | F  | Amin | L, L <sub>2</sub> | L4 | Ľ   | L <sub>2</sub> | L4    | 7     | L <sub>2</sub> | L4    | L,  | L <sub>2</sub> | L4  | Ľ   | L <sub>2</sub> | L4  | L, L2                                                               | -   | L.  | ΰ      | ပိ     |
|      | 10 | 71,4           | 105   | 109,5 | 111 | 10 | 14 | 125  |                   |    | 39  | 94             | 118   | 19    | 118            | 142   | 99  | 146            | 170 | 71  | 158            | 182 | 83                                                                  | 182 | 206 | 36064  | 81227  |
| 8    | 20 | 65,1           | 125   | 130,5 | 132 | 20 | 24 | 150  |                   | V. | 78  | 172            | 196   | 102   | 220            | 244   | 118 | 252            | 276 | 142 | 300            | 324 |                                                                     |     |     | 92563  | 144782 |
|      | 9  | 91             | 125   | 130   | 132 | 10 | 14 | 150  |                   |    | 39  | 94             | 118   | 51    | 118            | 142   | 65  | 146            | 170 | 7   | 158            | 182 | 83                                                                  | 182 | 206 | 38440  | 101264 |
| 8    | 20 | 84.7           | 150   | 156   | 158 | 20 | 24 | 175  |                   |    | 78  | 176            | 200   | 102   | 224            | 248   | 118 | 256            | 280 | 142 | 304            | 328 | 165                                                                 | 350 | 374 | 98898  | 184890 |
|      | 9  | 116,4          | 150   | 156   | 158 | 10 | 14 | 175  |                   |    | 39  | 94             | 118   | 51    | 118            | 142   | 65  | 146            | 170 | 7   | 158            | 182 | 83                                                                  | 182 | 206 | 42368  | 132702 |
| 125  | 20 | 110,1          | 175   | 180   | 182 | 50 | 24 | 200  |                   |    | 78  | 176            | 200   | 102   | 224            | 248   | 118 | 256            | 280 | 142 | 304            | 328 | 165                                                                 | 350 | 374 | 105612 | 235119 |
|      | 9  | 151,4          | 185   | 190   | 192 | 10 | 14 | 210  |                   |    | 39  | 94             | 118   | 5     | 118            | 142   | 65  | 146            | 170 | 7   | 158            | 182 | 83                                                                  | 182 | 206 | 45680  | 165672 |
| 8    | 20 | 145,1          | 210   | 216   | 218 | 20 | 24 | 235  |                   |    | 78  | 176            | 200   | 102   | 224            | 248   | 118 | 256            | 280 | 142 | 304            | 328 | 165                                                                 | 350 | 374 | 114100 | 305463 |
|      | 10 | 191,4          | 225   |       | 232 | 10 | 14 | 250  |                   |    | 39  | 94             | 118   | 51    | 118            | 142   | 92  | 146            | 170 | 71  | 158            | 182 | 83                                                                  | 182 | 206 | 49628  | 210380 |
| 200  | 20 | 185,1          | 250   | 256   | 258 | 20 | 24 | 275  |                   |    | 78  | 176            | 200   | 102   | 224            | 248   | 118 | 256            | 280 | 142 | 304            | 328 | 165                                                                 | 350 | 374 | 122627 | 385876 |
|      |    |                |       |       |     |    |    |      |                   |    |     |                |       |       |                |       |     |                |     |     |                |     |                                                                     |     |     |        |        |
|      |    |                |       |       |     |    |    |      |                   |    |     |                |       |       |                |       |     |                |     |     |                |     |                                                                     |     |     |        |        |
|      |    |                |       |       |     |    |    |      |                   |    |     |                |       |       |                |       |     |                |     |     |                |     |                                                                     |     |     |        |        |





# Double flanged nut with preload adjustment Series L

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

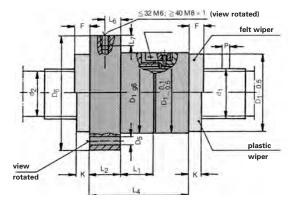
 $f \ddot{u} = S / P \times I$  $f \ddot{u} = roll \text{ over ratio}$   $C = Ci \times f[N]$  $C_o = Coi \times i [N]$ 

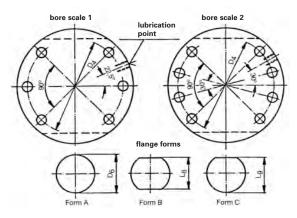
S = travel [mm]

C = dynamic load rating

P = lead [mm] i = number of load

carrying threads in nut


(total) [N]  $C_i = \text{dynamic load rating for}$ 


i = 1 [N]

Co = static load rating (total) [N]

 $C_{oi}$  = static load rating for i = 1 [N]

f = factor related to i





| = 2/f = 1,625   i = 3/f = 2,158   i = 1,1          | i=3/f=2,158 i=4/f=2,1<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> 41 12 94 47 12  41 12 94 47 12  65 12 164 78  41 14 96 47 14  65 14 142 78 14  65 14 142 78 14  65 14 142 78 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                    | i=3/f=2,158 i=4/f=2,639 i=5/f=3<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>2</sub><br>41 12 94 47 12 106 51 12<br>65 12 164 78 14 108 51 14<br>65 14 142 78 14 168 51 14<br>65 14 142 78 14 168 51 14<br>65 14 142 78 14 168 51 14 | 1 = 3/f = 2,158   1 = 4/f = 2,639   1 = 5/f = 3,085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1=3/f=2,158   1=4/f=2,639   1=5/f=3,085   1=6/f=3<br>  L <sub>1</sub>   L <sub>2</sub>   L <sub>4</sub>   L <sub>4</sub> | i=3/f=2,158 i=4/f=2,639 i=5/f=3,085 i=6/f=3, L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> 41 12 94 47 12 106 51 12 114  65 12 164 78 14 108 51 14 116 57 14  65 14 142 78 14 168 51 14 116 57 14  65 14 142 78 14 168 85 14 182 |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1=3/f=2,158                                        | 1=3/f=2,158   1=4/f=2,158   1=4/f=2,158 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                    | i = 3/f = 2,158   i = 4/f = 2,639   i = 5/f = 3,                                                                                                                                                                                                                                                                          | 1=3/f=2,158   1=4/f=2,639   1=5/f=3,085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1=3/f=2,158   1=4/f=2,639   1=5/f=3,085   1=6/f=3<br>  L <sub>1</sub>   L <sub>2</sub>   L <sub>4</sub>   L <sub>4</sub> | 1=3/f=2,158   1=4/f=2,639   1=5/f=3,065   1=6/f=3,505                                                                                                                                                                                                                                                                                                   |
| 2,158<br>L <sub>4</sub><br>94<br>164<br>164<br>142 | 2,158 i=4/f=2,<br>L <sub>4</sub> L <sub>1</sub> L <sub>2</sub><br>94 47 12<br>94 47 12<br>164 78<br>96 47 14<br>142 78 14<br>142 78 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,158 i=4/f=2,639 L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> 94 47 12 106 94 47 12 106 164 78 108 96 47 14 108 96 47 14 168 142 78 14 168 142 78 14 168 | 2,158 i=4/f=2,639 i=5/f=3,<br>L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub><br>94 47 12 106 51 12<br>164 78                                                                                                                                                                   | 2,158   i=4/f=2,639   i=5/f=3,085   L <sub>4</sub>   L <sub>1</sub>   L <sub>2</sub>   L <sub>4</sub>   L | 2,158 $\mathbf{i} = 4/f = 2,639  \mathbf{i} = 5/f = 3,085  \mathbf{i} = 6/f = 3$ 2,168 $\mathbf{i} = 4/f = 2,639  \mathbf{i} = 5/f = 3,085  \mathbf{i} = 6/f = 3$ 3,4 47 12 106 51 12 114 164 78 16 51 12 114 165 7 14 108 51 14 116 57 14 166 78 14 168 51 14 116 57 14 167 78 14 168 85 14 116 57 14 168 78 14 168 85 14 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,158 $i=4/f=2,639$ $i=5/f=3,085$ $i=6/f=3,505$ 2,168 $i=4/f=2,639$ $i=5/f=3,085$ 3,4 47 12 106 51 12 114  164 78 15 16 51 12 114  3,6 47 14 108 51 14 116 57 14 128  3,6 47 14 108 51 14 116 57 14 128  3,7 14 168 85 14 182 18                                                                                                                        |
|                                                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                          | i = 5/f = 3<br>  L1   L2   L2   L2   L2   L3   L4   L4   L5   L4   L5   L4   L5   L5                                                                                                                                                                                                                                      | 51 12 114 116 21 182 14 182 14 182 14 183 14 183 14 183 14 183 14 183 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i = 5/f = 3,085 i = 6/f = 3<br>L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub><br>L <sub>1</sub> L <sub>2</sub><br>51 12 114   57 14<br>51 14 116 57 14<br>85 14 182   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i = 5 / f = 3,085 i = 6 / f = 3,505 L <sub>1</sub> L <sub>2</sub> L <sub>3</sub> L <sub>4</sub> L <sub>1</sub> L <sub>2</sub> L <sub>4</sub> L <sub>4</sub> L <sub>5</sub> L <sub>4</sub>                                                      |





#### Double flanged nut with preload adjustment Series L

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches) Housing to customer drawings can be supplied by RACO. Tolerances not explicitly stated conform to German standard Din 7168. Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

= travel [mm]

= lead [mm]

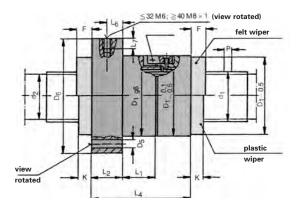
= number of load

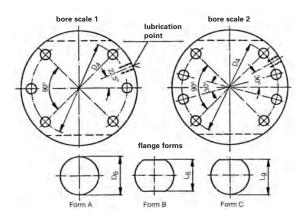
carrying threads in nut

 $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

= dynamic load rating


(total) [N]


C<sub>i</sub> = dynamic load rating for

i = 1[N]C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i









#### Flanged nut with preload adjustment Series N

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü  $\geq$  5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

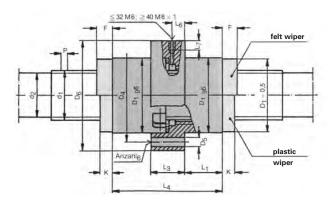
P = lead [mm]

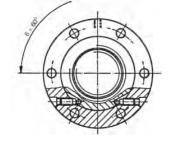
i = number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


C<sub>i</sub> = dynamic load rating for


i = dynamic i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1) 2)<br>d, | ۵  | 1) 2)<br>d <sub>2</sub> | D, 9 <sup>6</sup> | D <sub>4</sub> | D <sub>s</sub> | De  | Т.   | ۳<br>د<br>د | ( )<br>L | - 7 | i = 1/f = 1 | - 1 | <u>=</u> 7 | $i = 2/f = 1,625$ $L_1 \mid L_3 \mid L_4$ | 1,625<br>L <sub>4</sub> | i=3<br>L, | i = 3/f = 2,158<br>$L_1 \mid L_3 \mid L_4$ |     | = 4<br> - | i = 4/f = 2,639<br>$L_1 \mid L_3 \mid L_4$ | _   | i=5/<br>L, | i = 5 / f = 3,085<br>$L_1 \mid L_3 \mid L_4$ | _   | i=6/f=<br>L <sub>1</sub>   L <sub>3</sub> | 6.7  | 3,505 4)<br>L <sub>2</sub> C |         | € °   |
|-------------|----|-------------------------|-------------------|----------------|----------------|-----|------|-------------|----------|-----|-------------|-----|------------|-------------------------------------------|-------------------------|-----------|--------------------------------------------|-----|-----------|--------------------------------------------|-----|------------|----------------------------------------------|-----|-------------------------------------------|------|------------------------------|---------|-------|
| 1           |    |                         |                   |                |                |     |      |             |          | 9   |             |     |            |                                           |                         |           |                                            |     |           |                                            |     |            |                                              |     |                                           |      |                              |         |       |
| 2           | 2  | 16                      | 35                | 20             | 6,4            | 63  | 10   | 10 8        | 2        | 44  | 20          | 41  | 22         | 20                                        | 54                      | 28        | 52                                         | 02  |           |                                            |     |            |                                              |     |                                           |      | 8181                         |         | 8740  |
|             | 2  | 21                      | 40                | 55             | 8,4            | 20  | 101  | 10 8        | 20       | 14  | 20          | 36  | 22         | 20                                        | 54                      | 28        | 25                                         | 70  | 34        | 25                                         | 18  | 38         | 30                                           | 06  | H                                         | H    | 8769                         | +       | 11346 |
| 22          | 10 | 21                      | 42                | 28             | 8,4            | 75  | 10 1 | 14 8        | 2        | 25  | 25          | 19  | 39         | 25                                        | 91                      | 51        | 52                                         | 113 |           |                                            |     |            |                                              |     |                                           |      | 8439                         |         | 10710 |
|             | 2  | 28                      | 47                | 8              | 8,4            | 80  | 101  | 10 8        | 9        |     |             |     | 22         | 25                                        | 54                      | 28        | 25                                         | 70  | 34        | 25                                         | 18  | 38         | 30                                           | 96  | 44                                        | 30 1 | 101 9045                     | +       | 13981 |
| 32          | 9  | 28                      | 92                | 75             | 10,5           | 92  | 101  | 14 8        | 9        |     |             |     | 39         | 25                                        | 91                      | 51        | 25                                         | 113 | 92        | 30                                         | 147 |            |                                              |     |                                           |      | 11624                        | , ,     | 16110 |
|             | 20 | 36                      | 99                | 1              | 8,4            | 85  | 101  | 10 10       | 80       |     |             |     | 22         | 25                                        | 99                      | 28        | 25                                         | 02  | 34        | 30                                         | 98  | 38         | 30                                           | 06  | 4                                         | 30   | 101 10182                    | +       | 19174 |
| 4           | 10 | 31,4                    | 65                | 85             | 10,5           | 105 | 10 1 | 14 10       | 0 8      |     |             |     | 39         | 25                                        | 91                      | 51        | 35                                         | 123 | 65        | 30                                         | 147 | 71         | 30                                           | 158 |                                           |      | 29318                        |         | 38372 |
|             | 20 | 36                      | 20                | 90             | 13             | 110 | 10 2 | 24 10       | 8 0      |     |             |     | 46         | 35                                        | 117                     |           |                                            |     |           |                                            |     |            | -                                            |     |                                           |      | 128                          | 12848 2 | 21620 |
|             | 2  | 46                      | 9                 | 85             | 10,5           | 105 | 10 1 | 10 10       | 8 0      |     |             |     | 22         | 25                                        | 59                      | 28        | 25                                         | 70  | 34        | 30                                         | 98  | 38         | 30                                           | 06  | 44                                        | 30 1 | 101 10954                    |         | 24402 |
| 20          | 10 | 41,4                    | 75                | 95             | 13             | 115 | 10 1 | 14 10       | 0 8      |     |             |     | 39         | 25                                        | 91                      | 51        | 35                                         | 123 | 99        | 30                                         | 147 | 7.1        | 30                                           | 158 | 83                                        | 30 1 | 180 30365                    | -       | 47000 |
|             | 20 | 41,4                    | 80                | 100            | 13             | 120 | 10 2 | 24 10       | 0 8      |     |             |     | 46         | 35                                        | 117                     | 99        | 40                                         | 157 |           |                                            |     |            |                                              |     |                                           |      | 30364                        | -       | 46999 |
|             | 5  | 59                      | 78                | 100            | 10,5           | 120 | 10 1 | 10 10       | 6 0      |     |             |     | 22         | 25                                        | 69                      | 28        | 25                                         | 70  | 34        | 30                                         | 98  | 38         | 30                                           | 06  | 44                                        | 30 1 | 101 11602                    | H       | 30298 |
| 63          | 10 | 54,4                    | 90                | 120            | 17             | 150 | 10 1 | 14 10       | 6 0      |     |             |     | 39         | 25                                        | 91                      | 51        | 35                                         | 123 | 99        | 30                                         | 147 | 71         | 40                                           | 163 | 83                                        | 40 1 | 185 33854                    | -       | 64052 |
|             | 20 | 50,2                    | 95                | 125            | 17             | 155 | 16 2 | 24 10       | 0 9      |     |             |     | 72         | 50                                        | 174                     | 98        | 20                                         | 214 | 114       | 20                                         | 256 |            |                                              |     |                                           |      | 64343                        | -       | 89702 |





#### Flanged nut with preload adjustment Series N

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches) Housing to customer drawings can be supplied by RACO. Tolerances not explicitly stated conform to German standard Din 7168. Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for  $f\ddot{u} \ge 5$ . Please consult us if  $f\ddot{u} < 5$ .

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

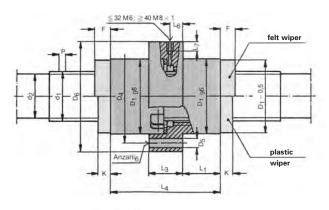
S = travel [mm]

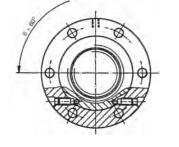
= lead [mm]

= number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

= dynamic load rating


(total) [N]


C<sub>i</sub> = dynamic load rating for i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1) 2)<br>d. | ۵   | 1) 2)<br>d. | D. 06 | Ö.  | ď  | ď   | ¥    | ш    | 6 1  |    | ΞΞ | =1/f=1 | _  | i = 2/f = 1,625 | 1,625 | <u> </u> | i = 3/f = 2,158 | 2,158 | <u>ii</u> _ | i = 4/f = 2,639 | 2,639 |     | i = 5/f = 3,085 | 3,085 |     | 5/f= | 11 - | i = 6/1 = 3,505 | = 3,505 4) |
|-------------|-----|-------------|-------|-----|----|-----|------|------|------|----|----|--------|----|-----------------|-------|----------|-----------------|-------|-------------|-----------------|-------|-----|-----------------|-------|-----|------|------|-----------------|------------|
|             | 10  | 71,4        |       |     | -  | 165 |      | -    | -    | 10 | +  | -      | -  | 25              | 6     | 5        | 38              |       | -           | -               | -     | -   | -               |       |     | \$   | 185  |                 | 36         |
| 8           | 20  | 65,1        | 130   | 165 | 12 |     | 20 2 | 24   | 0    | 01 |    |        | 78 | 20              | 180   | 102      | 20              | 224   | 118         | 20              | 260   | 142 | 20              | 304   |     |      |      |                 | 92563      |
| 1           | 10  | 91          | 130   | 165 | 21 | 200 | 10   | 14   | -    | 10 |    | H      | 39 | 30              | 9     | 51       | 35              | 123   | 99          | 4               | 157   | 77  | 40              | 163   | 83  | 9    | 185  | +               | 38440      |
| 8           | 20  | 84,7        | 150   | 185 | 51 | 220 | 50   | 24   | 10 1 | 10 |    |        | 78 | 20              | 180   | 102      | 20              | 224   | 118         | 20              | 260   | 142 | 20              | 304   | 165 | 20   | 347  |                 | 98898      |
| 0           | 10  | 116,4       | 160   | 200 | 21 | 240 | 10   | 14 1 | -    | 10 |    | -      | 39 | 30              | 91    | 51       | 35              | 123   | 65          | 40              | 157   | 71  | 40              | 163   | 83  | 40   | 185  |                 | 42368      |
| 125         |     | 110,1       | 170   | 210 | 25 | 250 | 20 2 | 24   | 10   | 10 |    |        | 78 | 20              | 180   | 102      | 20              | 224   | 118         | 20              | 260   | 142 | 20              | 304   | 165 | 20   | 347  |                 | 105612     |
|             | 10  | 151,4       | 200   | 240 | 25 | 280 | 10   | 14   | 10   | 10 |    | -      | 39 | 30              | 9     | 5        | 35              | 123   | 92          | 40              | 157   | 71  | 4               | 163   | 83  | 9    | 185  | _               | 45680      |
| 9           | 100 | 145,1       | 200   | 240 | 25 | 280 | 20 2 | 24 1 |      | 10 |    |        | 78 | 92              | 180   | 102      | 20              | 224   | 118         | 20              | 260   | 142 | 20              | 304   | 165 | 20   | 347  |                 | 114100     |
|             |     | 191,4       | 225   | 265 | 25 | 295 | 10   | 14   | 10 1 | 10 |    |        | 39 | 30              | 16    | 5        | 35              | 123   | 92          | 9               | 157   | 77  | 40              | 163   | 83  | 40   | 185  |                 | 49628      |
| 200         | 50  | 185,1       | 250   | 290 | 52 | 310 | 20 2 | 24   | -    | 10 |    |        | 78 | 20              | 180   | 102      | 20              | 224   | 118         | 20              | 260   | 142 | 20              | 304   | 165 | 20   | 347  | -               | 22627      |
| Г           |     |             |       |     | Ĭ  |     |      | H    | -    |    |    | -      |    | L               |       |          |                 |       |             |                 |       | L   | L               |       | L   |      |      | L               |            |
|             |     |             |       |     |    |     |      |      |      |    |    |        |    |                 |       |          |                 |       |             |                 |       |     |                 |       |     |      |      |                 |            |
|             |     |             |       |     |    |     |      |      |      |    |    | _      |    |                 |       |          |                 |       |             |                 |       |     |                 |       |     |      |      |                 |            |





# Double flanged nut with preload adjustment Outward facing flanges Series Q

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches)
Housing to customer drawings can be supplied by RACO.
Tolerances not explicitly stated conform to German standard Din 7168.
Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for fü ≥ 5. Please consult us if fü < 5.

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

S = travel [mm]

P = lead [mm]

i = number of load

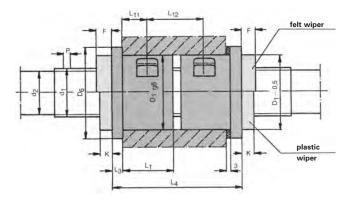
carrying threads in nut

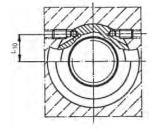
 $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

C = dynamic load rating

(total) [N]


C<sub>i</sub> = dynamic load rating for


i = dynamic i = 1 [N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





| 1) 2) | ۵   | 1) 2) | D. o | ď   | -    |    | ¥  | ш  |    | i=1/f=<br>L.   L. | = 1 | -  | -  | =2/f<br>L | 2/f=1,625<br>L, L, | = 1,625<br>L.   L. | <u> </u> | =3/f | 3/f=2,158<br>L. L. L. | 8 - |     | =4/f: |     | = 2,639<br>L. L. | i=  | =5/f | 5 / f = 3,085<br>L.   L.   L. | 2   |    | -  | -   | i=6/f=3,50 |       | i=6/f=3,50 |
|-------|-----|-------|------|-----|------|----|----|----|----|-------------------|-----|----|----|-----------|--------------------|--------------------|----------|------|-----------------------|-----|-----|-------|-----|------------------|-----|------|-------------------------------|-----|----|----|-----|------------|-------|------------|
|       |     | 7     |      | 9   | 100  | -  |    | +  |    | -                 | 7   | 21 |    | r         | +                  | 717                |          | î    | 9                     | 112 |     | r     |     | 7                | -   | r    |                               | 77  |    |    | r   | 7          | 7     | 14         |
| 20    | 2   | 16    | 36   | 20  | 13   | 00 | 9  | 9  | 41 | 10                | 49  | 8  | 22 | 9         | 09                 | 59                 | 28       | 9    | 72                    | 14  |     |       |     |                  |     |      |                               |     |    |    | 1   |            |       | 8181       |
| 1     | 10  | 21    | 42   | 55  | 16   | 10 | 10 | 10 | 14 | 9                 | 49  | 14 | 22 | 80        | 64                 | 25                 | 28       | 8    | 92                    | 37  | 34  | 8     | 88  | 49               | 38  | 80   | 96                            | 22  |    |    |     | T          | F     | 8769       |
| 22    | 10  | 21    | 42   | 22  | 16   | 16 | 10 | 14 | 25 | 9                 | 89  | 21 | 39 | 80        | 100                | 49                 | 51       | œ    | 124                   | 73  |     |       |     |                  |     |      |                               |     |    |    |     |            |       | 8439       |
|       | ro. | 28    | 50   | 09  | 19   | 10 | 10 | 10 |    |                   |     |    | 22 | 80        | 64                 | 25                 | 28       | 80   | 9/                    | 37  | 34  | 8     | 88  | 49               | 38  | 8    | 96                            | 57  | 4  | 80 | -   | 108        | 69 80 | 100        |
| 35    | 10  | 28    | 22   | 63  | 21   | 16 | 9  | 14 |    |                   |     |    | 39 | 80        | 100                | 49                 | 51       | 8    | 124                   | 73  | 92  | 8     | 152 | 101              |     |      |                               |     |    |    |     |            |       | 11624      |
|       | 5   | 36    | 99   | 75  | 25   | 10 | 10 | 10 |    | T                 |     |    | 22 | 80        | 64                 | 25                 | 28       | 8    | 92                    | 37  | 34  | 8     | 88  | 49               | 38  | 8    | 96                            | 57  | 44 | 80 | 108 | 8          | 69 8  | -          |
| 40    | 10  | 31,4  | 9    | 75  | 25   | 16 | 10 | 14 |    |                   |     |    | 39 | 8         | 100                | 49                 | 51       | 8    | 124                   | 73  | 99  | 8     | 152 | 101              | 71  | 8    | 164                           | 113 |    |    |     |            |       | 29318      |
| 1     | 20  | 36    | 70   | 80  | 25   | 16 | 10 | 24 |    |                   |     |    | 20 | 8         | 126                | 75                 |          |      |                       |     |     |       |     |                  |     |      |                               |     |    |    |     |            |       | 12848      |
| 1     | 2   | 46    | 70   | 85  | 27,5 | 10 | 10 | 10 |    |                   |     |    | 22 | 10        | 89                 | 25                 | 28       | 10   | 80                    | 37  | 34  | 10    | 92  | 49               | 38  | 10   | 100                           | 57  | 44 | 10 | 112 | O.         | 69 2  |            |
| 20    | 10  | 41,4  | 75   | 90  | 29,5 | 16 | 10 | 14 |    |                   |     |    | 39 | 10        | 104                | 49                 | 51       | 10   | 128                   | 73  | 99  | 10    | 156 | 101              | 71  | 10   | 168                           | 113 | 83 | 10 | 192 | -          | 137   | -          |
|       | 20  | 41,4  | 80   | 98  | 29,5 | 20 | 10 | 24 |    |                   |     |    | 20 | 10        | 130                | 29                 | 20       | 10   | 170                   | 107 |     |       |     |                  |     |      |                               |     |    |    |     |            |       | 30364      |
|       | 5   | 69    | 85   | 100 | 34   | 10 | 10 | 10 |    |                   |     |    | 22 | 10        | 89                 | 25                 | 28       | 10   | 80                    | 37  | 34  | 10    | 92  | 49               | 38  | 10   | 100                           | 57  | 44 | 10 | 112 | -          | 69    | _          |
| 63    | 10  | 54,4  | 90   | 110 | 36   | 16 | 10 | 14 |    |                   |     |    | 39 | 10        | 104                | 49                 | 51       | 10   | 128                   | 73  | 9   | 10    | 156 | 101              | 7.1 | 10   | 168                           | 113 | 83 | 10 | 192 | -          | 137   |            |
|       | 20  | 50.2  | 98   | 110 | 38   | 24 | 16 | 24 |    |                   |     |    | 72 | 10        | 174                | 103                | 95       | 10   | 220                   | 149 | 114 | 10    | 258 | 187              |     |      |                               |     |    |    |     | -          |       | 64343      |





#### Double flanged nut with preload adjustment Outward facing flanges Series Q

Special designs with dimensions and leads to customers' specifications can be supplied.

All dimensions in mm (" = lead in inches) Housing to customer drawings can be supplied by RACO. Tolerances not explicitly stated conform to German standard Din 7168. Acceptance tests according to German standard DIN 69 051 part 3.

- 1) Where the permissible lead variation is 0.050 and 0.100 over 300 mm, d1 and d2 are subject to a tolerance of +0.4 mm.
- 2) The diameter of the ball screw end over which the nut is fitted must not exceed d2. If a diameter larger than d1 is required at the other spindle end, then this should be obtained by shrinking on collars and flanges to limit costs.
- 3) Oil holes can be incorporated on request (not standard).
- 4) Determination of load rating according to German standard DIN 69051 part 4 for  $f\ddot{u} \ge 5$ . Please consult us if  $f\ddot{u} < 5$ .

 $f\ddot{u} = S / P \times I$ 

fü = roll over ratio

= travel [mm]

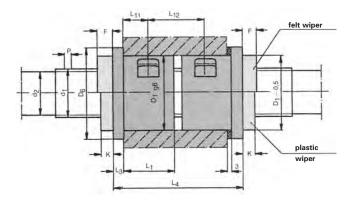
= lead [mm]

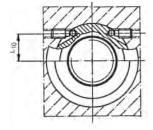
= number of load carrying threads in nut  $C = Ci \times f[N]$ 

 $C_o = Coi \times i [N]$ 

= dynamic load rating

(total) [N]


C<sub>i</sub> = dynamic load rating for


i = 1[N]

C<sub>o</sub> = static load rating (total) [N]

C<sub>oi</sub> = static load rating for i = 1 [N]

f = factor related to i





|                   | d <sub>1</sub> P d <sub>2</sub> D <sub>1</sub> | 10 71,4 | 80 20 65,1 1 | 10 91   | 100 20 84,7 1 | 10 116,4 | 125 20 110,1 1 | 10 151,4 | 160 20 145,1 2 | 10 191,4 | 200 20 185,1 2 |   |   |
|-------------------|------------------------------------------------|---------|--------------|---------|---------------|----------|----------------|----------|----------------|----------|----------------|---|---|
|                   | 96                                             | 105 13  | 125 1        | 130     | 150 1         | 160 1    | 170 1          | 185 21   | 210 2          | 225 2    | 250 2          | - | 1 |
| 3                 | D <sub>6</sub> L                               | 30 42   | 150 51       | 155 52, | 175 61        | 185 6    | 195 7          | r.       | 240 87         | 255 9    | 280 10         | - | 1 |
|                   | L10 L11                                        | 91 5    | 1 24         | 3,5 16  | 1 24          | 91 99    | 70 24          | 76 16    | 7 24           | 93 16    | 104 24         | - | 1 |
|                   | ×                                              | 3 10    | 4 20         | 3 10    | 4 20          | 9 10     | 4 20           | 9 10     | 4 20           | 9 10     | 4 20           | - | 1 |
|                   | ı.                                             | 14      | 54           | 41      | 24            | 14       | 24             | 41       | 24             | 41       | 24             |   |   |
| 11                | Lı Lı                                          |         |              | -       |               |          |                | -        |                |          |                |   |   |
| i = 1/f = 1       | La                                             |         |              |         |               |          |                |          |                |          |                |   | - |
|                   | L <sub>12</sub>                                |         |              |         |               |          |                |          |                |          |                |   |   |
| -                 | ۲                                              | 39      | 78           | 39      | 78            | 39       | 78             | 39       | 78             | 39       | 78             | L |   |
| =2/1              | L3                                             | 14      | 14           | 16      | 16            | 16       | 16             | 20       | 20             | 20       | 20             |   |   |
| i = 2/f = 1,625   | L4                                             | 112     | 194          | 116     | 198           | 116      | 198            | 124      | 206            | 124      | 206            |   |   |
| 2                 | L <sub>12</sub>                                | 49      | 115          | 49      | 115           | 49       | 115            | 49       | 115            | 49       | 115            |   |   |
| -                 | Ľ                                              | 51      | 102          | 51      | 102           | 51       | 102            | 51       | 102            | 51       | 102            |   |   |
| i = 3/f = 2,158   | L3                                             | 14      | 14           | 16      | 16            | 16       | 16             | 20       | 20             | 20       | 20             |   |   |
| = 2,15            | L4                                             | 136     | 242          | 140     | 246           | 140      | 646            | 148      | 254            | 148      | 254            |   |   |
| 88                | L <sub>12</sub>                                | 73      | 163          | 73      | 163           | 73       | 163            | 73       | 163            | 73       | 163            |   |   |
| -                 | Ľ                                              | 99      | 118          | 99      | 118           | 92       | 118            | 65       | 118            | 65       | 118            |   |   |
| =4/1:             | ٦                                              | 14      | 14           | 16      | 16            | 16       | 16             | 20       | 20             | 20       | 50             |   |   |
| i = 4 / f = 2,639 | L4                                             | 164     | 274          | 168     | 278           | 168      | 278            | 176      | 286            | 176      | 586            |   |   |
| 6                 | L <sub>12</sub>                                | 101     | 195          | 101     | 195           | 101      | 195            | 101      | 195            | 101      | 195            |   | 1 |
| 11                | 7                                              | 71      | 142          | 7       | 142           | 7        | 142            | 11       | 142            | 7        | 142            |   |   |
| 2/t=              | ۲3                                             | 14 1    | 14           | 16      | 16            | 16       | 16             | 20       | 20             | 20       | 50             |   | 1 |
| i = 5/f = 3,085   | L4 L                                           | 176 1   | 322 2        | 180     | 326 2         | 180      | 326 2          | 188      | 334 2          | 188      | 334 2          |   | 1 |
|                   | L <sub>12</sub>                                | 113     | 243          | 113     | 243 1         | 113      | 243 1          | 113      | 243 1          | 113      | 243 1          |   | 1 |
| j = [             | -                                              | 83 1    |              | 83      | 165 1         | 83 1     | 165 1          | 83       | 165 2          | 83       | 165 2          |   |   |
| i = 6 / f = 3,505 | L3 L                                           | 14 20   |              | 16 20   | 16 37         | 16 20    | 16 37          | 20 2     | 20 38          | 20 2     | 20 36          |   |   |
| 3,505             | L4 L12                                         | 200 137 |              | 204 137 | 372 289       | 204 137  | 372 289        | 212 137  | 380 289        | 212 137  | 380 289        |   |   |
| 4)                |                                                | 36064   | 92563        | 38440   | 98888         | 17 42368 | 105612         | 37 45680 | 114100         | 37 49628 | 122627         | 1 | 1 |
| _                 | ပိ                                             | 81227   | 144782       | 101264  | 184890        | 132702   | 235119         | 165672   | 305463         | 210380   | 385876         |   |   |



#### **8 QUALITY ASSURANCE**

#### **Everything fits together with RACO**

Design and production under one roof - that's RACO. Whatever you have to move, you can be sure with RACO that ideas and products fit together. With complex sequences of motion such as multiple-level workpiece positioning, it's essential that hardware and software work together without a hitch. With our leading-edge technology and production quality, you can be sure that the processes run the way you want them to.

#### Our principle is giving you maximum quality

RACO means maximum quality for engineering positioning and handling operations. And there's a good reason for that. We build all of the essential components for our products ourselves. That means we can incorporate the technical aspects of the application early in the manufacturing stage of our spindles. Beyond this, our experience in the manufacture of trapezoidal and ball screw spindles guarantees a maximum of operating reliability. We check every product leaving our production site right down to the last screw.

# 3 15 m

Fig. 24: Surface measurement device

#### Precision components that are still robust

RACO's ball screws are real workhorses for long service lives even under the toughest conditions. Our products show their strength wherever the need is for a precision component that is still robust. Take mining, steel and rolling mills and traffic engineering for example. That's where our long-life products bring you economic benefits.



Fig. 25: Laser linear measurement equipment



#### 9 SERVICE / MAINTENANCE

Ball screws have to be mounted so that radial or excentric loads can not appear at the screw or nut. Only axial forces should be transferred and the end positions have to be defined by switches and by mechanical barrier, to protect the nut assembly.

#### Dismounting and assembly of the ball screws and nuts

RACO ball screws are invariably supplied with the nut fitting. If removal of the nut is necessary, the following procedure applies:

An assembling sleeve with an outer diameter of  $1.02 \times d_2$  and at least twice as long as the nut has to be available for receiving the nut.

This sleeve is butted up against the start of the thread and the nut including the balls are threaded onto it by rotation in the direction corresponding to the hand of the thread. The nut can then be withdrawn complete with the sleeve

Assembly takes place in the reverse sequence. During this process care has to be taken so none of the balls get into the dead zones of the thread between the crossover pieces.

NOTE: Defective balls screws and nuts and preloaded nut assemblies should be repaired in our works!

#### Installation

Prior to fitting, the ball screw and nut should be cleaned with a cleaning agent, e. g. white spirit, if it is necessary. The cleaning agents used must not attack the wiper materials such as nylon and felt. As a rule, the removal of the corrosion inhibitor is not necessary.

The ball screws and nuts are protected from corrosion in our shop and require lubrication (oil or grease) before operation. As ball screws and nuts are sensitive to dirt and chips, they invariably must be protected by tightly fitting covers, such as concertina covers or telescopic springs.

To achieve the desired service life, the balls screws must be fitted without alignment error between the screw bearings, the nut mounting and the slideways. Where the housing for the double cylindrical nuts is supplied by the customer, the permissible axial run-out of the nut locating face relative to the locating bore in the housing must not exceed 0.005 mm.

NOTE: Never dismount the guiding inserts!

Never put additional balls as substitution for lost balls in the nut assembly! Assembly of nut with new balls should be carried out by specialists!



#### Max. permissible speed of rotation

The maximum permissible speed of rotation depends on the speed of the balls in the nut assembly and the centrifugal forces generated by them. A rough guideline for medium sized diameter is

 $n \times d_1 = 110 000$ 

n = speed of rotation (rpm)

 $d_1$  = screw dia. (mm)

This does not take into consideration other factors such as ball diameter, lead, operating, conditions and the critical speed of rotation of the screw. Please consult us for applications within the critical range.

#### Permissible operating temperature

The standard ball screws can be used at temperatures ranging from -30 + 110°C without taking the dimensional changes due the temperature into consideration. Please consult us for applications outsides these limits.

#### Lubrication

Lubricants have the task of reducing friction and, together with the wipers and covers, of protecting the ball screws from wear and corrosion. The choice of lubricants and the type of lubrication should suit the speed of rotation, the load and the operating temperature. Similar considerations as for the lubrication of rolling bearings apply.

Due to the axial movement between screw and nut, however, and the imperfect sealing, the loss of lubricant is greater than with ordinary rolling bearings. Therefore, a single charge of grease usually is not adequate for the entire life of the ball screw. Graphite and molybdenum disulphide additives should be avoided if possible.

A few rough guidelines are given below. The choice of lubricant and the lubrication system for the entire machine must be taken into account in individual cases.

#### Oil lubrication

One of the effects of severe fluctuations in the operating temperature is a change in the length of the screw, which is detrimental, to the positioning accuracy. In such cases, oil rather than grease lubrication can be used to provide an additional means of heat dissipation.

For recirculating systems we recommend mineral oils with additives for improving the resistance to aging and the corrosion protection, such as CL oils to German standard DIN 51517 part 2.



In the case of heavy duty and/or low speeds of rotation these oils should also have extreme pressure additives to reduce wear, such as CLP oils to German specification DIN 51517 part 3.

In the case of oil bath lubrication, the balls should be immersed completely in oil when in their lowest position. In recirculating systems the flow of oil should range from approx. 5 to 15 cc7h per thread (= number of ball tracks in nut), depending on the size of the screw and the amount of heat to be dissipated.

The recommended viscosities are listed in Fig. 25. The higher viscosities apply to the larger sizes of ball screws.

| n x d<br>rpm x nominal<br>diameter (mm) | Viscosity<br>(c St/40°C) | Viscosity grade German<br>standard DIN 51 519 |
|-----------------------------------------|--------------------------|-----------------------------------------------|
| up to 1000                              | 400-1100                 | ISO VG 460<br>ISO VG 680<br>ISO VG 1000       |
| 100-10000                               | 150-350                  | ISO VG 150<br>ISO VG 220<br>ISO VG 320        |
| 10000-40000                             | 35-110                   | ISO VG 46<br>ISO VG 68<br>ISO VG 100          |
| 40000-110000                            | 17-50                    | ISO VG 46<br>ISO VG 32<br>ISO VG 22           |

Fig. 25: Viscosity recommendations

#### Grease lubrication

Grease lubrication has the advantage over a costly central lubrication system need not be fitted and that as a rule replenishment is only required after every 500 hours of operation.

We recommend greases based on mineral oils with additives for improved resistance to aging and corrosion protection and conforming to German standard DIN 51 825 part 1.

| n x d<br>rpm x nominal<br>diameter (mm) | Grade of grease as per<br>German standard DIN<br>51 825 part 1 |
|-----------------------------------------|----------------------------------------------------------------|
| up to 1000                              | КЗК                                                            |
| 100-10000                               | K2K                                                            |
| 10000-40000                             | K2K                                                            |
| 40000-110000                            | K1K                                                            |
| 40000-110000                            | K1K                                                            |

Fig. 26: Recommend greases

For extremely heavy duty, greases with additives for increasing the load carrying capacity and reducing wear, such as KP grease to German standard DIN 51 825 part 3, can be used.

The amount of grease should be such that the cavities are only approximately half filled. Greases based on different soaps must not be mixed together.

#### Storage

Ball screws are high precision machine parts and are sensitive to all kinds of damage and dirt. Storage prior to installation must ensure that bending of the screw and corrosion cannot occur.

Our ball screws and nuts are treated with a corrosion inhibitor prior to dispatch, so that under proper indoor storage conditions they are protected for approx. 5 years.



#### **RACO Elektro-Maschinen GmbH**

Jesinghauser Str. 56-64 D-58332 Schwelm Tel: +49 2336 40 09-0 eMail: sales@raco.de www.raco.de

certified acc. ISO 9001

| NOTE: For your convenience please find the engineering data sheet, which may assists you by collecting all relevant items for your particular ball screw enquiry! If you have further questions our engineering team will be prepared to support you. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                       |